INPT W

alfolg—gllg a o U u1_._bg_|| a_h = 4
o@ZoX oloL30 | +Ocldos+ A SLC5oLIE

Institut National des Postes et Télécommunications

INSTITUT NATIONAL DES POSTES ET
TELECOMMUNICATIONS

PROJET PERSONNEL ET PROFESSIONNEL
RAPPORT DE PROJET

A1l Counsult : Chatbot Hybride

Intelligent
Réalisé par :
Salmane BABA Encadrant :
Yassin NAJMI Pr H. KAMAL IDRISSI

Abderrahmane OUARACH

Table des matiéres

Table des matiéres
1 Introduction

2 Application Android
2.1 Objectifs de ’Application Android
2.2 Choix Technologiques
2.2.1 Langage de Programmation : Kotlin.
2.2.2 Interface Utilisateur : Jetpack Compose
2.2.3 Architecture : Clean Architecture et MVVM
2.3 Communication Réseau et Backend
2.3.1 Retrofit et OkHttp
2.3.2 Authentification et Sécurité
2.4 Systéme de Chat avec Agent IA Unique
2.5 Gestion de 'Etat et Performance UL
2.6 Apports de cette Premiére Etape

3 Application Android : Implémentation du Client Mobile
3.1 Objectifs de ’Application Android
3.2 Choix Technologiques
3.2.1 Langage de Programmation : Kotlin.
3.2.2 Interface Utilisateur : Jetpack Compose
3.2.3 Architecture : Clean Architecture et MVVM
3.3 Communication Réseau et Backend
3.3.1 Retrofitet OkHttp
3.3.2 Authentification et Sécurité
3.4 Systéme de Chat avec Agent TA Unique
3.5 Gestion de I'Etat et Performance UL
3.6 Apports de cette Premiére Etape

4 Backend : Conception et Implémentation
4.1 Technologies Utilisées Lo
4.2 Architecture Générale
4.3 Authentification et Sécuritéo o
4.4 Flux d’Authentification
4.5 Gestion des Données
4.6 APIREST e
4.7 Gestion des Erreurs et Logso
4.8 Lien avec 'Evolution Multi-Agents

5 Prototype du Juge Multi-Agents (Premiére Implémentation)
5.1 Objectif du Prototype
5.2 Architecture Globale oo oo
5.3 Détails du Backend (Le Cerveau)
5.3.1 Le Juge et le Routeur (brain.py)
5.3.2 La Synthése des Experts (brain.py)
5.3.3 Les Travailleurs (ai.py) o i
5.3.4 Le Serveur (server.py)

10
10
10
10
10
11
11
11

1 Introduction

1 Introduction

L’essor spectaculaire de I'intelligence artificielle conversationnelle a profondément trans-
formé la maniére dont les utilisateurs interagissent avec les systémes numériques. Les
chatbots modernes ne se limitent plus & fournir des réponses prédéfinies ou & exécuter des
régles simples : ils sont désormais capables de raisonner, de synthétiser de I'information
complexe et de s’adapter dynamiquement au contexte de 'utilisateur. Cependant, malgré
ces avancées, une limite majeure subsiste dans la majorité des solutions existantes : la
dépendance & un modéle d’intelligence artificielle unique.

Dans les architectures classiques, un seul modéle est responsable de 'analyse de la
requéte, du raisonnement et de la génération de la réponse finale. Cette approche pré-
sente plusieurs inconvénients. D’une part, chaque modéle posséde ses propres forces et
faiblesses : certains excellent dans le raisonnement logique, d’autres dans la créativité ou
la concision, tandis que certains sont plus performants pour le code ou I'analyse technique.
D’autre part, s’appuyer sur un seul modéle augmente le risque d’erreurs, d’hallucinations
ou de réponses incomplétes, en particulier pour des requétes complexes ou ambigués.

C’est dans ce contexte que s’inscrit notre projet de chatbot intelligent basé sur une
architecture multi-agents. L’idée centrale du projet est de ne plus considérer 'intelligence
artificielle comme une entité unique, mais comme un ensemble collaboratif de plusieurs
intelligences artificielles spécialisées, travaillant en paralléle. Dans notre implémentation,
lorsqu’un utilisateur envoie un message, celui-ci n’est pas traité par un seul modéle, mais
diffusé simultanément & trois intelligences artificielles distinctes. Chaque TA analyse la
requéte de maniére indépendante et géneére sa propre réponse, selon ses capacités et son
mode de raisonnement.

Une fois ces réponses produites, un quatriéme composant intelligent intervient. Son
role n’est pas de répondre directement a I'utilisateur, mais d’agir comme un juge et un éva-
luateur. Ce composant compare les différentes réponses générées par les trois IA, analyse
leur pertinence, leur cohérence et leur qualité globale, puis sélectionne — ou synthétise
— la meilleure réponse possible. Cette approche permet de tirer parti des points forts de
chaque modéle tout en réduisant I'impact de leurs faiblesses individuelles.

L’objectif principal de ce projet est donc de concevoir et d’implémenter un chatbot
hybride, plus fiable, plus précis et plus robuste qu’'un chatbot traditionnel. En combinant
le parallélisme des modéles, la comparaison intelligente des réponses et une logique de
décision centralisée, notre solution vise a offrir a 1'utilisateur final une réponse optimale,
aussi bien pour des questions simples que pour des problématiques complexes nécessitant
du raisonnement avanceé.

2 Application Android

2 Application Android

Cette section présente la conception et le développement de l'application Android
du projet. Lors de la premiére étape du travail, I'objectif était de mettre en place une
application mobile fonctionnelle intégrant un seul agent d’intelligence artificielle.
Cette étape a permis de valider 'architecture mobile, la communication avec le backend et
I'expérience utilisateur, avant 1’évolution vers une architecture multi-agents plus avancée.

2.1 Objectifs de I’Application Android

L’application Android constitue le point d’entrée principal pour I'utilisateur final. Elle
a été congue afin de :

— Fournir une interface de messagerie simple, fluide et moderne.

— Permettre 'authentification sécurisée des utilisateurs (inscription et connexion).

— Assurer la communication avec un backend exposant une APT REST.

— Intégrer un premier agent IA (DeepSeek-R1 via Ollama) pour valider le fonction-

nement du chatbot.
— Préparer une base logicielle extensible pour I'intégration future de plusieurs agents

IA.

2.2 Choix Technologiques

Le développement de ’application mobile repose sur des technologies Android mo-
dernes, garantissant performance, maintenabilité et évolutivité.

2.2.1 Langage de Programmation : Kotlin

L’ensemble de I’application est développé en Kotlin. Ce langage offre une syntaxe
concise, une meilleure gestion de la nullabilité et un excellent support de la programmation
asynchrone via les Coroutines. Ces caractéristiques sont essentielles pour gérer les appels
réseau vers le backend et I'agent TA sans bloquer 'interface utilisateur.

2.2.2 Interface Utilisateur : Jetpack Compose

L’interface graphique est construite avec Jetpack Compose, un framework déclaratif
moderne. Contrairement aux interfaces XML traditionnelles, Compose permet de lier
directement ’état de 'application a l’affichage, rendant I’UT plus réactive et plus facile a
maintenir. Les écrans principaux incluent :

— Ecran de connexion et d’inscription.

— Ecran principal de discussion (chat).

— Gestion dynamique de I'historique des messages.

2.2.3 Architecture : Clean Architecture et MVVM

L’application suit les principes de la Clean Architecture combinés au pattern MVVM
(Model-View-ViewModel). Cette organisation permet une séparation claire des res-
ponsabilités :

— Couche Présentation : Composants Jetpack Compose et ViewModels respon-

sables de I'état de l'interface.

2 Application Android

— Couche Domaine : Contient la logique métier et les modeéles principaux (mes-
sages, conversations).

— Couche Data : Gére la communication réseau et ’accés aux sources de données
distantes.

2.3 Communication Réseau et Backend

La communication entre 'application Android et le backend est réalisée via une API

REST.

2.3.1 Retrofit et OkHttp

La librairie Retrofit est utilisée pour définir les endpoints réseau et sérialiser les
données échangées. OkHttp compléte cette configuration en gérant les timeouts étendus
nécessaires aux réponses de 'agent A, ainsi que l'ajout automatique des en-tétes de
sécurité.

2.3.2 Authentification et Sécurité

L’authentification repose sur un mécanisme de jeton JWT. Aprés 'inscription, un
processus d’auto-login est déclenché afin de récupérer immédiatement un jeton valide.
Celui-ci est stocké de maniére sécurisée a I'aide de Jetpack DataStore, garantissant une
persistance fiable et asynchrone.

2.4 Systéme de Chat avec Agent IA Unique

Dans cette premiére version, chaque message envoyé par 'utilisateur est transmis a
un unique agent IA (DeepSeek-R1 exécuté localement via Ollama). Le workflow est le
suivant :

1. L’utilisateur saisit un message dans l'interface de chat.
Le ViewModel envoie la requéte au backend via le Repository.
Le backend transmet la requéte a 'agent IA DeepSeek-R1.

La réponse générée est renvoyée a l’application Android.

B B o

L’interface met & jour I’historique de la conversation en temps réel.

Cette approche mono-agent a permis de valider la stabilité du flux de données, la
gestion des états de chargement et 'affichage fluide des réponses.

2.5 Gestion de I’Etat et Performance Ul

L’état du chat est centralisé dans un objet ChatState observé par 'interface. L utili-
sation de LazyColumn pour l'affichage des messages permet d’optimiser les performances,
méme en présence d'un grand nombre de messages, en ne rendant que les éléments visibles
a I’écran.

3 Application Android : Implémentation du Client Mobile

2.6 Apports de cette Premiére Etape

Le développement de cette application Android mono-agent a constitué une étape clé
du projet. Il a permis :

— De valider les choix d’architecture mobile.

— De tester I'intégration d’un agent IA réel dans une application Android.

— D’identifier les contraintes de latence et de performance coté client.

— De poser des bases solides pour I’évolution vers une architecture multi-agents,

présentée dans les sections suivantes.

Cette application Android servira ainsi de socle pour l'intégration du backend avancé

et du systéme de comparaison intelligente entre plusieurs agents TA.

3 Application Android : Implémentation du Client Mo-
bile

Cette section présente la conception et le développement de l'application Android
du projet. Lors de la premiére étape du travail, I'objectif était de mettre en place une
application mobile fonctionnelle intégrant un seul agent d’intelligence artificielle basé
sur Ollama et le modéle DeepSeek-R1. Cette étape a permis de valider I'architecture
mobile, la communication avec le backend et l'expérience utilisateur, avant 1’évolution
vers une architecture multi-agents plus avancée.

3.1 Objectifs de I’Application Android

L’application Android constitue le point d’entrée principal pour I'utilisateur final. Elle
a été congue afin de :

— Fournir une interface de messagerie simple, fluide et moderne.

— Permettre 'authentification sécurisée des utilisateurs (inscription et connexion).

— Assurer la communication avec un backend exposant une API REST.

— Intégrer un premier agent IA (DeepSeek-R1 via Ollama) pour valider le fonction-
nement du chatbot.

— Préparer une base logicielle extensible pour 'intégration future de plusieurs agents
IA.

3.2 Choix Technologiques

Le développement de ’application mobile repose sur des technologies Android mo-
dernes, garantissant performance, maintenabilité et évolutivité.

3.2.1 Langage de Programmation : Kotlin

L’ensemble de l'application est développé en Kotlin. Ce langage offre une syntaxe
concise, une meilleure gestion de la nullabilité et un excellent support de la programmation
asynchrone via les Coroutines. Ces caractéristiques sont essentielles pour gérer les appels
réseau vers le backend et I'agent TA sans bloquer I'interface utilisateur.

3 Application Android : Implémentation du Client Mobile

3.2.2 Interface Utilisateur : Jetpack Compose

L’interface graphique est construite avec Jetpack Compose, un framework déclaratif
moderne. Contrairement aux interfaces XML traditionnelles, Compose permet de lier
directement I'état de ’application a ’affichage, rendant I’UI plus réactive et plus facile a
maintenir. Les écrans principaux incluent :

— Ecran de connexion et d’inscription.

— Ecran principal de discussion (chat).

— Gestion dynamique de ’historique des messages.

3.2.3 Architecture : Clean Architecture et MVVM

L’application suit les principes de la Clean Architecture combinés au pattern MVVIM
(Model-View-ViewModel). Cette organisation permet une séparation claire des res-
ponsabilités :

— Couche Présentation : Composants Jetpack Compose et ViewModels respon-

sables de I’état de I'interface.

— Couche Domaine : Contient la logique métier et les modéles principaux (mes-

sages, conversations).

— Couche Data : Gére la communication réseau et I'accés aux sources de données

distantes.

UI (Compose)

Etat (State) | | Evénements
ViewModel

Action

Repository

Requéte REST

API (Backend)

3.3 Communication Réseau et Backend

La communication entre 'application Android et le backend est réalisée via une API
REST.

3.3.1 Retrofit et OkHttp

La librairie Retrofit est utilisée pour définir les endpoints réseau et sérialiser les
données échangées. OkHttp compléte cette configuration en gérant les timeouts étendus
nécessaires aux réponses de 'agent IA, ainsi que l'ajout automatique des en-tétes de
sécurité.

3 Application Android : Implémentation du Client Mobile

3.3.2 Authentification et Sécurité

L’authentification repose sur un mécanisme de jeton JWT. Aprés 'inscription, un
processus d’auto-login est déclenché afin de récupérer immédiatement un jeton valide.
Celui-ci est stocké de maniére sécurisée a ’aide de Jetpack DataStore, garantissant une
persistance fiable et asynchrone.

3.4 Systéme de Chat avec Agent IA Unique

Dans cette premiére version, chaque message envoyé par 1'utilisateur est transmis a
un unique agent IA (DeepSeek-R1 exécuté localement via Ollama). Le workflow est le
suivant :

1. L’utilisateur saisit un message dans l'interface de chat.
Le ViewModel envoie la requéte au backend via le Repository.
Le backend transmet la requéte a 'agent IA DeepSeek-R1.

La réponse générée est renvoyée a l'application Android.

AN T

L’interface met a jour I’historique de la conversation en temps réel.

Cette approche mono-agent a permis de valider la stabilité du flux de données, la
gestion des états de chargement et ’affichage fluide des réponses.

3.5 Gestion de I’Etat et Performance UI

L’état du chat est centralisé dans un objet ChatState observé par 'interface. L utili-
sation de LazyColumn pour l'affichage des messages permet d’optimiser les performances,
méme en présence d’'un grand nombre de messages, en ne rendant que les éléments visibles
a I’écran.

3.6 Apports de cette Premiére Etape

Le développement de cette application Android mono-agent a constitué une étape clé
du projet. Il a permis :

— De valider les choix d’architecture mobile.

— De tester I'intégration d’un agent A réel dans une application Android.

— D’identifier les contraintes de latence et de performance coté client.

— De poser des bases solides pour l’évolution vers une architecture multi-agents,

présentée dans les sections suivantes.

Cette application Android servira ainsi de socle pour 'intégration du backend avancé

et du systéme de comparaison intelligente entre plusieurs agents TA.

4 Backend : Conception et Implémentation

4 Backend : Conception et Implémentation

Le backend constitue le coeur logique et fonctionnel du systéme SudChat. Il assure
I’authentification des utilisateurs, la gestion des conversations, la persistance des données
et la communication entre ’application Android et les agents d’intelligence artificielle. Son
architecture a été pensée pour étre modulaire, sécurisée et évolutive, afin de supporter la
transition progressive d’un systéme mono-agent vers une architecture multi-agents.

4.1 Technologies Utilisées

Le backend repose sur une stack moderne orientée performance et maintenabilité :

— NestJS : Framework Node.js permettant de construire des API REST robustes et
modulaires.

— TypeScript : Typage statique garantissant une meilleure maintenabilité du code.

— MongoDB : Base de données NoSQL orientée documents.

— Mongoose : ODM pour la définition des schémas et la validation des données.

— JWT : Authentification stateless sécurisée.

— Docker : Conteneurisation et portabilité du backend.

4.2 Architecture Générale

Le backend suit une architecture modulaire conforme aux bonnes pratiques NestJS.
Chaque fonctionnalité est isolée dans un module indépendant.

— auth/ : Gestion des utilisateurs, authentification JWT et guards.

— chat/ : Gestion des conversations et messages.

— schemas/ : Modéles MongoDB (User, Conversation, Message).

— app.module.ts : Module principal de I'application.

4.3 Authentification et Sécurité

L’authentification repose sur des tokens JWT signés et a durée de vie limitée. Les
mots de passe sont stockés sous forme hashée & 1’aide de berypt. Les routes sensibles
sont protégées par des guards JWT.

4.4 Flux d’Authentification

Envoi des identifiants & /auth/login.
Validation des données via DTOs.
Vérification des identifiants et génération du JW'T.

Retour du token au client.

BRI A

Acceés sécurisé aux routes protégées.

4.5 Gestion des Données

La persistance est assurée par MongoDB :

— User : email, mot de passe hashé, date de création.
— Conversation : participants, messages, dates.

— Message : auteur, contenu, horodatage, statut.

4 Backend : Conception et Implémentation

4.6 API REST

Le backend expose une API RESTful structurée :

— Authentification : inscription, connexion, refresh token.

— Chat : création de conversations, envoi et récupération des messages.
— Utilisateurs : gestion des profils.

4.7 Gestion des Erreurs et Logs

Les erreurs sont gérées de maniére centralisée grace aux filtres d’exceptions NestJS.
Les logs permettent de tracer les requétes et les erreurs critiques.

4.8 Lien avec ’Evolution Multi-Agents

Dans cette premiére phase, le backend agit comme un intermédiaire entre ’application
Android et un seul agent TA (DeepSeek-R1 via Ollama). Sa conception modulaire permet
d’intégrer ultérieurement plusieurs agents IA, de diffuser les requétes en parallele et de
comparer les réponses sans modifier la base existante.

5 Prototype du Juge Multi-Agents (Premiére Implémentation)

5 Prototype du Juge Multi-Agents (Premiére Implé-
mentation)

Cette section présente une premiére implémentation expérimentale du Juge multi-
agents, con¢ue comme un prototype fonctionnel permettant de valider le concept central
du projet. Cette étape ne représente pas une solution finale optimisée, mais une premiére
tentative visant a tester la faisabilité, la pertinence et les performances d’'un mécanisme
de comparaison intelligente entre plusieurs intelligences artificielles.

5.1 Objectif du Prototype

L’objectif principal de ce prototype est de démontrer qu’il est possible de :

— Diffuser une méme requéte utilisateur vers plusieurs agents IA en paralléle.

— Collecter leurs réponses indépendantes.

— Evaluer ces réponses selon des critéres qualitatifs.

— Sélectionner automatiquement la réponse la plus pertinente pour 1'utilisateur final.

Ce prototype constitue ainsi une preuve de concept (PoC) du systéme de décision
multi-agents.

5.2 Architecture Globale

Le projet repose sur une architecture client-serveur moderne utilisant les technologies
suivantes :

— Backend : Python avec le framework FastAPI (Asynchrone).

— Communication : WebSockets pour une interaction temps réel bidirectionnelle.

— Frontend : HTML5, CSS3 et JavaScript pur (Vanilla JS).

— TA : Intégration via API de Gemini 1.5 Flash, GPT-40-mini et DeepSeek-R1.

Flux de Données

L’utilisateur envoie un message depuis I'interface web.
Le serveur FastAPI recoit le message via WebSocket.
Le module brain.py (Le Juge) analyse l'intention.

Si la requéte est simple — Réponse immédiate.

Si la requéte est complexe — Appel paralléle aux 3 modéles experts, puis synthése.

S A S o

La réponse finale est renvoyée au frontend et affichée.

5.3 Détails du Backend (Le Cerveau)

Le cceur du systeme réside dans le dossier backend/. Voici 'explication détaillée de
chaque module.

5.3.1 Le Juge et le Routeur (brain.py)

Ce fichier contient la logique décisionnelle. La fonction judge_and_route agit comme
un garde-fou intelligent.

10

5 Prototype du Juge Multi-Agents (Premiére Implémentation)

async def judge_and_route(user_input: str, history=[]):
Prompt syst me d finissant les r gles
system_instruction = """

You are the Router for an AI System.

TASK: Decide if this needs "Simple" processing or "Complex"

reasoning.

CRITERIA FOR ’SIMPLE’: Greetings, Facts, Personal questions.

CRITERIA FOR ’>COMPLEX’: Coding, Math, Debate, Reasoning.

OUTPUT RULES:
1. If SIMPLE: Respond directly.
2. If COMPLEX: Output ONLY "COMPLEX_MODE".

Appel Gemini Flash (rapide et peu co teux) pour d cider
res = await gemini_client.generate_content (...)
if "COMPLEX_MODE" in res.text:
return "COMPLEX", None
else:
return "SIMPLE", res.text

Listing 1 — Logique du Juge (brain.py)

5.3.2 La Synthése des Experts (brain.py)

Si le mode complexe est activé, la fonction synthesize_final_answer est appelée.
Elle prend les réponses brutes de Gemini, GPT-40 et DeepSeek, et utilise un modéle
pour les fusionner en une réponse parfaite, éliminant les hallucinations et combinant les
meilleurs points de chaque modéle.

5.3.3 Les Travailleurs (ai.py)

Ce fichier gére les connexions aux APIs externes. L’utilisation de asyncio est cruciale
ici pour la performance.

Exemple d’appel asynchrone pour ne pas bloquer le serveur
async def ask_gemini (prompt, history=[]):
res = await asyncio.to_thread(
gemini_client .models.generate_content,
model="gemini-1.5-flash",
contents=format_history (prompt, history)

)

return res.text

Listing 2 — Exécution Asynchrone

5.3.4 Le Serveur (server.py)

Point clé : Le Parallélisme. Pour le mode complexe, nous n’attendons pas les
modéles I'un apres ’autre. Nous les lancons tous en méme temps grace a asyncio.gather :

Lancement simultan des 3 requ tes

rl, r2, r3 = await asyncio.gather(
ask_gemini (user_text, chat_history),
ask_openai (user_text, chat_history),
ask_deepseek (user_text, chat_history)

)

Cela divise le temps d’attente par 3 par rapport a une exécution séquentielle.

11

5 Prototype du Juge Multi-Agents (Premiére Implémentation)

Conclusion Générale

Ce projet a permis de concevoir et de mettre en ceuvre une solution compléte de
chatbot intelligent, allant d’une application mobile Android moderne jusqu’a un backend
robuste intégrant des mécanismes avancés d’intelligence artificielle. I’approche adoptée
s’'inscrit dans une démarche progressive et méthodique, débutant par une architecture
mono-agent afin de valider les choix techniques fondamentaux, puis évoluant vers une
architecture multi-agents plus ambitieuse.

Le développement de ’application Android a constitué une étape essentielle du projet.
Il a permis de mettre en place une interface utilisateur fluide, sécurisée et performante,
reposant sur des technologies modernes telles que Kotlin, Jetpack Compose et la Clean
Architecture. Cette premiére version mono-agent, basée sur DeepSeek-R1 via Ollama, a
permis de tester concrétement 'intégration d’un agent IA dans un environnement mo-
bile réel, tout en identifiant les contraintes liées a la latence, a la gestion de I'état et a
I’expérience utilisateur.

Le backend, développé avec NestJS et MongoDB, a fourni une base solide, modu-
laire et sécurisée pour la gestion des utilisateurs, des conversations et des messages. Son
architecture découplée, 1'utilisation de JWT pour 'authentification, ainsi que la conte-
neurisation via Docker garantissent une bonne maintenabilité, une sécurité renforcée et
une évolutivité adaptée a des déploiements a plus grande échelle.

L’apport majeur de ce projet réside dans 'introduction d’un prototype de juge multi-
agents. Cette premiére implémentation expérimentale a permis de démontrer la pertinence
d’une approche collaborative, dans laquelle plusieurs intelligences artificielles sont mises
en concurrence afin de produire une réponse finale de meilleure qualité. Bien que ce mé-
canisme reste perfectible, il valide I’hypothése selon laquelle la comparaison et la synthése
de réponses issues de différents modéles peuvent surpasser une approche mono-agent clas-
sique.

En perspective, plusieurs axes d’amélioration peuvent étre envisagés, notamment 1’op-
timisation des critéres de jugement, I'introduction de métriques quantitatives, ’apprentis-
sage adaptatif du juge, ainsi qu’une intégration plus avancée coté mobile. Ainsi, ce projet
constitue une base technique et conceptuelle solide pour le développement futur d’assis-
tants intelligents plus fiables, plus performants et mieux adaptés aux besoins complexes
des utilisateurs.

12

	Introduction
	Application Android
	Objectifs de l’Application Android
	Choix Technologiques
	Langage de Programmation : Kotlin
	Interface Utilisateur : Jetpack Compose
	Architecture : Clean Architecture et MVVM

	Communication Réseau et Backend
	Retrofit et OkHttp
	Authentification et Sécurité

	Système de Chat avec Agent IA Unique
	Gestion de l’État et Performance UI
	Apports de cette Première Étape

	Application Android : Implémentation du Client Mobile
	Objectifs de l’Application Android
	Choix Technologiques
	Langage de Programmation : Kotlin
	Interface Utilisateur : Jetpack Compose
	Architecture : Clean Architecture et MVVM

	Communication Réseau et Backend
	Retrofit et OkHttp
	Authentification et Sécurité

	Système de Chat avec Agent IA Unique
	Gestion de l’État et Performance UI
	Apports de cette Première Étape

	Backend : Conception et Implémentation
	Technologies Utilisées
	Architecture Générale
	Authentification et Sécurité
	Flux d’Authentification
	Gestion des Données
	API REST
	Gestion des Erreurs et Logs
	Lien avec l’Évolution Multi-Agents

	Prototype du Juge Multi-Agents (Première Implémentation)
	Objectif du Prototype
	Architecture Globale
	Détails du Backend (Le Cerveau)
	Le Juge et le Routeur (brain.py)
	La Synthèse des Experts (brain.py)
	Les Travailleurs (ai.py)
	Le Serveur (server.py)

